SONA COLLEGE OF TECHNOLOGY, SALEM-5

(An Autonomous Institution)

M.E-Electronics and Communication Engineering (VLSI Design)

CURRICULUM and **SYLLABI**

[For students admitted in 2018-2019]

M.E / M.Tech Regulation 2015

Approved by BOS and Academic Council meetings

(An Autonomous Institution)

Courses of Study for ME I Semester under Regulations 2015

Electronics and Communication Engineering

Branch: M.E. VLSI Design

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit
	1	Theory			1	
1	P15VLD101	Applied Mathematics for Electronics Engineers	3	2	0	4
2	P15VLD102	DSP Integrated Circuits	3	0	0	3
3	P15VLD103	Advanced Digital System Design	4	0	0	4
4	P15VLD104	CMOS VLSI Design	3	0	0	3
5	P15VLD105	Solid State Device Modeling and Simulation	3	0	0	3
6	P15VLD106	Testing of VLSI Circuits	3	0	0	3
		Practical		1	1	
7	P15VLD107	VLSI Design Laboratory - I	0	0	4	2
	•	•	•	Т	otal Credits	22

Approved by

Chairman, Electronics and Communication Engineering BOS Member Secretary, Academic Council Chairperson, Academic Council & Principal Dr.R.S.Sabeenian Dr.R.Shivakumar Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/ECE, First Semester ME VLSI Students and Staff, COE

(An Autonomous Institution)

Courses of Study for ME II Semester under Regulations 2015

Electronics and Communication Engineering

Branch: M.E. VLSI Design

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit
		Theory				
1	P15VLD201	VLSI Signal Processing	3	2	0	4
2	P15VLD202	Computer Aided Design of VLSI Circuits	4	0	0	4
3	P15VLD203	Low Power VLSI Design	3	0	0	3
4	P15VLD501	Professional Elective - Analysis and Design of Analog Integrated Circuits	3	0	0	3
5	P15VLD512	Professional Elective - Embedded Systems	3	0	0	3
6	P15VLD513	Professional Elective - Nanoelectronics	3	0	0	3
		Practical				
7	P15VLD204	VLSI Design Laboratory - II	0	0	4	2
				To	tal Credits	22

Approved by

Chairman, Electronics and Communication Engineering BOS Member Secretary, Academic Council Chairperson, Academic Council & Principal Dr.R.S.Sabeenian Dr.R.Shivakumar Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/ECE, Second Semester ME VLSI Students and Staff, COE

Sona College of Technology, Salem (An Autonomous Institution)

Courses of Study for ME III Semester under Regulations 2015

Electronics and Communication Engineering

Branch: M.E. VLSI Design

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit
	1	Theory				
1	P15VLD509	Professional Elective- ASIC Design	3	0	0	3
2	P15VLD511	Professional Elective - Analysis and Design of Digital Integrated Circuits	3	0	0	3
3	P15VLD607	Open Elective- Human Resource Development	3	0	0	3
		Practical				
4	P15VLD301	Project Phase - I	0	0	16	8
		,		Т	otal Credits	17

Approved by

Chairman, Electronics and Communication Engineering BOS Member Secretary, Academic Council Chairperson, Academic Council & Principal Dr.R.S.Sabeenian Dr.R.Shivakumar Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/ECE, Third Semester ME VLSI Students and Staff, COE

(An Autonomous Institution)

Courses of Study for ME IV Semester under Regulations 2015

Electronics and Communication Engineering

Branch: M.E. VLSI Design

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit
		Practical				
1	P15VLD401	Project Phase – II	0	0	24	12
				To	otal Credits	12

Approved by

Chairman, Electronics and Communication Engineering BOS Member Secretary, Academic Council Chairperson, Academic Council & Principal Dr.R.S.Sabeenian Dr.R.Shivakumar Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/ECE, Fourth Semester ME VLSI Students and Staff, COE

(An Autonomous Institution)

Courses of Study for ME I Semester under Regulations 2015

Electronics and Communication Engineering

Branch: M.E. VLSI Design

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit
	1	Theory			1	
1	P15VLD101	Applied Mathematics for Electronics Engineers	3	2	0	4
2	P15VLD102	DSP Integrated Circuits	3	0	0	3
3	P15VLD103	Advanced Digital System Design	4	0	0	4
4	P15VLD104	CMOS VLSI Design	3	0	0	3
5	P15VLD105	Solid State Device Modeling and Simulation	3	0	0	3
6	P15VLD106	Testing of VLSI Circuits	3	0	0	3
		Practical		1	1	
7	P15VLD107	VLSI Design Laboratory - I	0	0	4	2
	•	•	•	Т	otal Credits	22

Approved by

Chairman, Electronics and Communication Engineering BOS Member Secretary, Academic Council Chairperson, Academic Council & Principal Dr.R.S.Sabeenian Dr.R.Shivakumar Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/ECE, First Semester ME VLSI Students and Staff, COE

P15VLI	D101	AP	PLIED) MA	ATH	IEM	ИAТ	TIC	ICS F	FO)R E	ELE	CTR	ONI	ICS	EN	GIN	EER	S	L 3	T 2	P 0	C 4	Ma 10	arks 00
COURS	SE OUTCOMES	<u>S</u>																							
At the e	nd of each unit,	the stu	ıdents y	will l	be a	ble	e to -) -																	
1. C	omprehend main	concep	pts and	prop	positi	tions	ıs of	of fuz	uzzy	y log	gic _]	prin	ciple	s.											
2. A ₁	pply the various r	method	ls of ma	atrix	facto	tors t	to so	solve	lve th	the e	eng	ginee	ring j	prob	lem	s.									
3. Us	se the decomposit	itions o	of the m	atrix	k and	d ran	ınk re	redu	ducing	ing a	appr	roxii	matio	ons fo	or ei	ngin	eerin	g app	olica	tion	S.				
4. A ₁	pply and analyze	the dy	namic p	progr	ramn	ming	ng for	for pr	probl	blen	m so	olvin	ıg.												
5. A	nalyze problem so	solving	capabil	lity o	of qu	ıeuir	ing n	g mod	odels	ls.															
UNIT I	FUZZY LOGI Classical Logic Propositions –	ic – M				_						-			•			•		-				zzy	15
UNIT	MATRIX THI	EORY																							15
II	Some Importan – Computing Rotations.									-	-						•				-				
UNIT	SINGULAR V	VALUI	E DEC	OMI	POS	SITI	ION	N																	15
III	Pseudo Inverse Toplitz Matrice Toplitz Equation	es and	Some A	Appl	licati	tions			_																
UNIT	DYNAMIC PI	ROGR	AMMI	ING	r																				15
IV	Recursive Natu Knapsack Load Problem of Din	ding M	Iodel –																						
UNIT	QUEUING MO	ODEL	S																						15
V	Poisson Proces Steady State Ar			_			-	_	le and	nd M	Mult	lti-Se	erver	Mod	lels	(Pro	oblen	ns On	ıly) -	– Lit	tle's	For	rmu	la –	
																							T	'otal	: 75
REFER	ENCE BOOKS																								
1.	George J. Klir an Ltd., 1997.	ınd Yua	ın, B., "	"Fuzz	zy Se	'ets a	and.	d Fuz	₹uzzy	y Lo	ogic	c, Th	eory	and.	Арр	olica	tions	", Pr	entic	ce –	Hall	of I	ndia	a Pvt	•
2.	Moon, T.K., Ster 2000.	erling, V	W.C., "A	Math	hema	atica	cal M	Meth	ethod	ods a	and .	l Algo	orithr	ms fo	r Si	gna	l Pro	cessi	ng",	Pea	rson	Edu	ıcat	ion,	
3.	Richard Johnson Private Ltd., Nev				l's, "	'Pro	obab	ability	lity ar	and	d Sta	atisti	cs for	r Eng	gine	ers'	", 7 th	Editi	on, l	Pren	tice -	– На	all o	f Ind	lia,
4.	Taha, H.A., "Op 2002.	peration	ns Rese	earch,	h, An	intr	trodi	ducti	ction'	n", 7	7 th I	Editi	ion, F	Pears	on I	Educ	cation	n Edi	tions	s, As	ia, N	lew	Del	hi,	
5.	Donald Gross an 1985.	nd Carl	M. Ha	ırris, ʻ	"Fur	ındai	amen	ental	tals of	of Q	Quei	ruing	theo	ry",	2 nd]	Edit	ion, .	John	Wile	ey ar	d Sc	ons,	Nev	v Yo	rk,

P15VL	D102	DSP INTEGRATED CIRCUITS	L 3		P 0	C 3	Mai 100	ks
COUR	SE OUT	COMES						
At the	end of ea	ach unit, the students will be able to -						
1. Γ	Design ar	ad apply standard DSP and other DSP systems used in ICs.						
2. Γ	Design ar	nd illustrate the concepts of DSP systems, DFT, FFT and DCT.						
3. I	Design th	e digital filters IIR and FIR for signal processing applications.						
4. E	Examine	and synthesize the DSP architectures and implement it on PEs and bit serial PEs.						
5. I	Design ar	nd evaluate recent trends in DSP processors and system design.						
UNIT	DSP	INTEGRATED CIRCUITS AND VLSI CIRCUIT TECHNOLOGIES						9
Ι	Desig	ard Digital Signal Processors – Application Specific IC's for DSP – DSP System – n – Partitioning Techniques – Integrated Circuit Design – MOS transistors – MOS nologies – Trends in CMOS Technologies.						
UNIT	DIGI	TAL SIGNAL PROCESSING						9
II	Syste: Algor	al Signal Processing – Sampling of Analog Signals – Selection of Sample Frequences – Frequency Response – Transfer Functions – Signal Flow Graphs – Filter Structions – DFT – The Discrete Fourier Transform – FFT – The Fast Fourier Transform – Discrete Cosine Transforms.	ture	s - I	Adap	tive	DSP	
UNIT	DIGI	TAL FILTERS AND FINITE WORD LENGTH EFFECTS						9
III	Trans Facto Oscill	Filters – FIR Filter Structures – FIR Chips- IIR filters – Specifications of IIR Filters fer Functions – Mapping of Analog Filter Structures – Multi-rate Systems – Interport – Sampling Rate Change with a Ratio L/M – Multi-rate Filters – Finite Word Leations – Scaling of Signal Levels – Round-Off Noise – Measuring Round-Offivity – Sensitivity and Noise	olationgth	on w	ith a	n Int -Para	eger	
UNIT	DSP.	ARCHITECTURES AND SYNTHESIS OF DSP ARCHITECTURES						9
IV	Multi Mapp	luction – DSP System Architectures – Standard DSP Architecture – Ideal processors and Multi-Computers – Systolic and Wave Front Arrays – Shared Meing of DSP Algorithms onto Hardware – Implementation Based on Complex Patecture With Bit – Serial PEs.	emor	у А	rchite	ectur	es –	
UNIT	DSP	PROCESSOR AND RECENT TRENDS IN DSP SYSTEM DESIGN						9
V	Addre Overv Evolu	duction of TMS320C55X Processors – Features – CPU Architecture of C55X – Messing Modes – Assembly Language Instructions – Pipeline Operation – Interruptive of the Application Notes on DSP Systems – An Overview of Open Multimedia Action of FPGA Based System Design – An Introduction to FPGA – Design flow for an n – CAD Tools for FPGA Based System Design – Soft-Core Processor – FPG n.	ts – Appl n FP	Peri icati GA	pher on (C Base	als - OMA d Sy	- An AP) – stem	
						T	otal:	45
		BOOKS						
1.		anhammer, "DSP Integrated Circuits", Academic press, New York, 1999.	1	1 1	.1: ·	·	"Tra	to.
	McGrav	aramani B. and Bhaskar M., "Digital Signal Processors – Architecture, Programming v – Hill Publishing Company Limited, New Delhi, 2011.						
	Educati	uel C. I. Feachor, Barrie W. Jervis, "Digital signal processing – A Practical Approacon, Asia 2001.						
4.	Bayoun 2005.	ni & Magdy A., "VLSI Design Methodologies for Digital Signal Processing Architect	ures	", B	S Pul	olica	tions,	

P15VL	LD103	ADVANCED DIGI	TAL SYSTEM DESIGN		L 4	T 0	P 0	C 4	Marks 100
COLIB	SE OUTCOM	<u> </u>			7	-	•		
		the students will be able to -							
1. I	Design and anal	e the synchronous sequential circui	ts.						
2. I	Design and anal	e synchronous sequential circuits u	sing ASM.						
3. I	Design and anal	e asynchronous sequential circuits.							
4.	Analyze and ver	y variable entered maps.							
5. I	Design system o	ntrollers using combinational and se	quential circuits.						
UNIT I	Structure and Sequential Countries Using Mealy	DUS SEQUENTIAL CIRCUIT DE Operation of Clocked Synchronou uits – Modeling of Clocked Sync d Moore Networks – Sequence Re chronous Sequential Circuits.	s Sequential Networks - nronous Sequential Netwo	ork Behavior –	Seri	al B	inary	Ad	der
UNIT II	Algorithmic Assignments	PUS SEQUENTIAL CIRCUIT DI ate Machine – ASM Charts – ASM ASM Transition Tables – ASM E PLAs – PROMs – Design of Iterati	I Blocks – Sequence Rec excitation Tables – ASM						
UNIT III	Structure and Races and Ha Flow Tables	OUS SEQUENTIAL CIRCUIT Is peration of Asynchronous Sequential Notes Flow Table Reduction — State Sequential Circuits.	ial Networks – Analysis o tworks – Primitive Flow	Гable – Reductic	n of	Inp	ut Re	stric	ted
UNIT IV	Variable Ente	JLTI-INPUT SYSTEM CONTRO d Maps – Simplification – System logy – Choosing The Controller s Complement System and Pop Vo	Controllers – Design Pl Architecture – State As	ssignment – Ne	ext S	State	Dec	odei	r –
UNIT V	SYSTEM CO Decoders and Using Shift R	TROLLERS USING COMBINATION OF THE STREET STREET THE STREET STREET STREET THE STREET ST	- Indirect-Addressed MUX uirements of a Programma	Configuration	– Sy				
	•							Te	otal: 60
REFE	RENCE BOOK								
1.	Donald G. Giv	e, "Digital principles and Design"	Tata McGraw Hill, 2013						
2.	William I. Flet	er, "An Engineering Approach to I	Digital Design", Prentice H	Hall India, 2009.					
3.	Charles H. Rot	Jr,, "Fundamentals of Logic design	", Thomson Learning, 200)4.					
4.	Nripendra N B	was, "Logic Design Theory", Prent	ce Hall of India, 2005.						

P15VLD	104						Cl	MOS	S VL	LSI	I DES	IGN							L 3	T 0	P 0	C 3	Mai 100	
	E OUTCOMI d of each uni		stude	nts wil	l be a	ıble t	to -																	
	ustrate the VI							ses of	of MC	IOSF	FETs.													
	escribe and ev												ETS.											
3. Aı	nalyze and eva	aluate	the sta	atic and	l swit	ching	g cha	aracte	teristi	stics o	of CN	MOS i	invert	ers.										
4. De	esign combina	ationa	l and s	equent	ial log	gic ci	ircuit	its usin	ing C	CMC	IOS p	rincip	oles.											
5. W	rite the progra	ammi	ng cod	es, sim	ulate	and i	impl	lement	nt CN	CMO	OS log	gic circ	cuits ı	ısing	Veri	ilog I	HDL.							
UNIT I	INTRODU Overview Modularity Basic Step	of V y and	LSI D Locali	esign ty – V	Metho LSI D	odolo Design	ogies n Sty	s – V yles –	VLS – De	LSI I Design	Desig gn Qu	gn Flo ality -	- Pack	cagin	g Te	chno	ology	– Fab	rica	tion				
UNIT II	MOS TRA The MOS MOSFET - Basic Co LEVEL 3 MOSFET	S Stru Curre oncep Mode	cture - nt-Vol ts of N el Equa	- The tage C Iodelii	MOS harac ng of	Systerist MOS	stem tics - S - '	unde – MOS The L	ler E OSFE LEV	Exter FET S VEL	ernal Scalin L 1 M	Bias ing and Iodel	– Str id Sma Equat	all-Ge ions -	eome – Th	etry I ne LI	Effect EVEI	s – M 2 M	IOS ode	FET Eq	Cap uatio	acita ns –	nces The	
UNIT III	MOS INV Static Cha Introduction Constraints of CMOS	aracte on of ts – Es	ristics Switch stimatio	of Reing Ch	sistiv aracte	e Lo eristic	oad i	Invert Delay	rter ay Ti	· – I Гіте	e – De	etermi	inatio	n of d	delay	/ Tin	nes –	Inver	ter I	Desig	gn w	ith D	elay	
UNIT IV	COMBIN MOS Logi Transmissi Flip – Flop	ic Cir ion G	cuits w ates –	ith De Behav	pletio for of	n nM Bista	AOS table	Loads Elem	ds – ment	- CM nts –	MOS 1 - CMO	Logic OS SF	Circu R Late	iits – ch Cir	rcuit									
UNIT V	VERILOO Overview Modeling Bench.	of Di	gital D	esign v	vith V	/erilo	og H	IDL –	– Hi	Iierar	archic	al Mo												
	.																					T	otal:	45
EFERE	ENCE BOOK	KS																						
	ıng-Mo Kang ndia) Pvt. Ltd				bici, '	"CM	OS I	Digita	tal Ir	Integ	egrated	d Circ	cuits -	- Ana	alysis	s ana	d Des	ign",	Мс	Grav	w Hi	ll Ec	lucat	ion
	haskar J., "A I																							
	. Jacob Baker,										-													
	eil H.E. West SIA, 2 nd Editio			ran Es	hragh	ian, '	"Pri	inciple	oles o	of C	CMOS	S VLS	SI Des	ign -	- A S	Syste	m Pe	rspec	tive	", P	earso	n Ec	lucat	ion
5. Jo	hn P. Uyemu	ıra, " <i>Iı</i>	ıtroduc	ction to	VLSI	I Circ	cuits	s and S	l Syst	stems	ns", Jo	ohn W	√iley &	& Son	ns, In	nc., 2	002.							

P15VLI	D105	SOLID STA	TE DEVIC	E MOI	DELIN	NG AN	ID SIN	IULAT	ION	L	_			Mar	ks
										3	0	0	3	100	
	SE OUTCOMI														
		t, the students will			1.5.5										
		analyze MOSFET													
		trate the modeling t					tion.								
3. D	Design and analy	ze the modeling of	BSIM4 MOS	SFET m	models.										
4. D	Design and evalu	ate the EKV model	and other MO	IOSFET	T mode	els.									
5. A	nalyze the mod	eling of passive dev	ices and qual	ılity assı	surance	e of MC	OSFET	models							
UNIT	MOSFET DE	VICE PHYSICS,	OPERATIO	N AND	D RF N	MODE	LING								9
Ι	Operation – B Transistors – I	acitor – Threshold Vasic MOSFET Mod High-frequency Beh IQS Model for RF	eling – Advar avior of MOS	anced M OS Trans	MOSFE	ET - Eq	quivale	nt Circu	it Repr	esentati	on of	MO	S		
UNIT	NOISE MOD	ELING AND DIST	TORTION A	ANALY	YSIS										9
II	Noise Models Calculation of	in a MOSFET – Fl Thermal Noise M the Noise Paramete llculation of Distort	odeling – Exters – Basic T	xisting T Termino	Therma - nology	al Nois – Non-	se Mod	els – HF	Noise	Parame	ters -	- Ana			
UNIT	BSIM4 MOS	FET MODEL													9
III	Mobility Mod	n to BSIM4 – Gate el – Source/Drain R s – Capacitance Mo	esistance Mo	odel – <i>I</i> -	I-V Mod	odel – O	Gate Tu	ınneling	Curre	nt Mode	1 - S	ıbstr	ate		
UNIT		SFET MODELS													9
IV	Introduction - Drain Current	Model Features – L – SPICE Example Iodeling – The Nois	 The Effect 	ct of Cha	narge-Sl	Sharing	- Mod	eling of	Charge	e Storag	e Eff	ects -	- No	n-	
UNIT V	MODELING MOSFET MO	OF PASSIVE DE DDELS	VICES, PRO	OCESS	S VARI	RIATIO)N AN	D QUA	LITY .	ASSUR	ANC	E O	F		9
	Poly-Poly Car Inductors –	Resistors – Well R acitors – Metal-In The Influence of Pro- plications – Motiv	sulator-Metal ocess Variatio	al Capac ion and I	citors - l Device	– MOS e Mism	SFET C natch –	apacito: Modeli:	rs – Ju ng of D	inction (evice M	Capac	citors	_	_	
													T	otal:	45
REFER	RENCE BOOK														
1.	Trond Ytterda Wiley & Sons	, Yuhua Cheng and Ltd, 2003.	Tor A. Fjeld	dly, <i>"De</i>	evice M	Modelin	ig for A	nalog a	ınd RF	CMOS	Circu	it De	sigr	ı", Jo	hn
2.	Grasser, T., "A	dvanced Device Mo	odeling and S	Simulati	tion", V	World S	Scientif	ic Publi	shing (Compan	y, 20	03.			
3.	Ben G. Streetr	nan, " <i>Solid State De</i>	vices", Prent	ntice Hal	all, 199′	97.									
4.		Montoro, Marco Ch ishing Co. Pte. Ltd.		der, "M	10SFE	ET Mod	eling fo	or Circu	it Anal	ysis and	Desi	gn",	Wo	rld	

P15VLI	D106	TESTING OF V	LSI CIRCUITS		L	T		С	Marks
					3	0	0	3	100
	SE OUTCOMI								
		the students will be able to -							
	•	ng of faults and types of simulation f		ms.					
		test generation of combinational circ							
		test generation of sequential circuits							
		e the test pattern generation of Built I							
5. Sy		yze different fault diagnosis in comb	inational and sequential cir	cuits.					
UNIT	TESTING A	D FAULT MODELLING							9
I	Detection an	Testing – Faults in Digital Circui Redundancy – Fault Equivalence and ation – Compiled Simulation – Eve ion.	l Fault Location — Fault I	Dominance –	Lo	gic S	Simu	ılati	on –
UNIT	TEST GEN	ATION OF COMBINATIONAL (CIRCUITS						9
II	D-Algorithm Testable Con	n of Combinational Logic Circuits — Path Oriented Decision Making — De inational Logic Circuit Design —Th ign — Use of Control Logic — Syndro	tection of Multiple Faults i e Reed-Muller Expansion	n Combination	onal	Log	ic C	ircu	its –
UNIT		ATION OF SEQUENTIAL CIRC							9
III	Test General State Table	n of Sequential Circuits – Testing or erification – Random Testing – Trantial Circuits – Scan Path Technique	f Sequential Circuits as It ansition Count Testing –	Signature A	naly	sis -	- D	esig	n of
UNIT	BUILT IN	CLF – TEST							9
IV	Exhaustive T LSSD on Cl	Test Pattern Generation for BIST ting – Specific BIST Architectures – Self Test – Self-Testing Using MI ata – Circular Self Test Path – Built	Built In Evaluation and S SR and Parallel SRSG –	elf Test – Ra Concurrent	ındo	m T	est S	Sock	ket –
UNIT	FAULT DIA	NOSIS							9
V	Diagnosis fo Design – Ap	iagnosis – Fault Dictionary- Guide Combinational Circuits – Expert Syst cation of Error Detecting and Error ing – Self Checking Checkers – Parit	ems for Diagnosis – Effect Correcting Codes – Multip	t Cause Anal le Bit Errors	ysis – C	– Se heck	elf C king	Chec Cir	king
								T	otal: 45
REFER	ENCE BOOK								
1.	Parag K. Lala	Fault Tolerant and Fault Testable Ha	rdware Design", BS Public	cations, 2009	٠.				
2.	Abramovici M 2004.	Breuer M.A. and Friedman A.D., "Di	gital Systems and Testable	Design", Jaio	co P	ublis	hing	g Ho	ouse,
3.		d Agrawal V. D., "Essentials of Electral Academic Publishers, 2002.	tronic Testing for Digital, M	Memory and .	Mixe	ed-Si	gna	l VL	SI
4.	Crouch A.L, '	esign for Test for Digital IC's and En	nbedded Core System", Pre	entice Hall In	terna	ation	al, 2	2002	·•

P15V	LD107 VLSI DESIGN LABORATORY – I	L	T	P	C	Marks
		0	0	4	2	100
COU	RSE OUTCOMES					
	e end of the experiments, the students will be able to -					
1.	Design and analysis the digital systems using Verilog HDL.					
2.	Verify the characteristics of MOSFET.					
3.	Implement the digital system design in FPGA Board and analyze the same for performance					
4.	Design the NMOS, CMOS Logic circuits and analyze the characteristics of the same.					
LIST	OF EXPERIMENTS					
1.	Design of NMOS and CMOS Inverters - DC and transient characteristics and switching times					
2.	Design of CMOS logic gate circuits.					
	i) Static logic					
	ii)Dynamic logic					
	iii) Domino logic					
3.	Design of combinational circuits using Verilog and implement in FPGA.					
	i) Multiplexer and De-Multiplexer					
	ii)Encoder and Decoder					
	iii) Comparator					
4.	Design of sequential circuits using Verilog and implement in FPGA.					
	i) Shift Registers					
	ii)Counters					
5.	Design and implementation of ALU using FPGA and Verilog HDL.					
6.	Design of FIR filters using FPGA and Verilog HDL.					
7.	Design of the multiplier using FSM.					
8.	Model a sequence detector to checks three consecutive one's and verify the same using test be	ench.				
9.	Design and implementation of traffic controller using FPGA.					

(An Autonomous Institution)

Courses of Study for ME II Semester under Regulations 2015

Electronics and Communication Engineering

Branch: M.E. VLSI Design

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit			
		Theory	•						
1	P15VLD201	VLSI Signal Processing	3	2	0	4			
2	P15VLD202	Computer Aided Design of VLSI Circuits	4	0	0	4			
3	P15VLD203	Low Power VLSI Design	3	0	0	3			
4	P15VLD501	Professional Elective - Analysis and Design of Analog Integrated Circuits	3	0	0	3			
5	P15VLD512	Professional Elective - Embedded Systems	3	0	0	3			
6	P15VLD513	Professional Elective - Nanoelectronics	3	0	0	3			
		Practical							
7	P15VLD204	VLSI Design Laboratory - II	0	0	4	2			
Total Credits									

Approved by

Chairman, Electronics and Communication Engineering BOS Member Secretary, Academic Council Chairperson, Academic Council & Principal Dr.R.S.Sabeenian Dr.R.Shivakumar Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/ECE, Second Semester ME VLSI Students and Staff, COE

P15VLI	D201		VI	LSI SIGN	NAL]	PRO	CESS	SING					T			Ma	
												3	2	U	4	100	U
	SE OUTCOMES and of each unit, t		ill he ahld	e to -													
	viscuss about the in				lining	ng and	paralle	el proc	essing	r							
	nalyze the differe							er proc	Coomig	••							
	Explain the differen							naral	lel and	1 proce	essing	of IIR	filte	rs			
	esign the different										coome	01 111	TITLE	13			
	Discuss about the s		•	•	•				•		I SI						
UNIT I	INTRODUCT: Introduction to - Loop Bound Processing - P Low Power.	ION TO DSP S DSP Systems – and Iteration 1	SYSTEM - Typical Bound —	IS DSP Algo Algorithn	gorith	thms – for Co	Iterati omputi	ion Bo ing Ite	und – ration	Data Bour	Flow (ad – P	ipelin	ing a	nd l	Para	allel	15
UNIT II	RETIMING, FOLDING AND UNFOLDING Retiming – Definitions and Properties – Retiming Techniques – Unfolding – an Algorithm for Unfolding – Properties of Unfolding –Applications – Sampling Period Reduction – Parallel Processing –Folding – Folding Transformation – Register Minimizing Techniques – Register Minimization in Folded Architectures.								15								
UNIT III	FAST CONVO Fast Convolution – Pipelined and First – Order II IIR Filters – Pip	on – Cook-Toor Parallel Recurs R Filters – Para	sive and a	Adaptive I essing for	Filter	ters – F R Filter	Pipelin rs – Co	ne Inter ombine	rleavir ed Pip	ng in I elining	Digital g and l	Filter Paralle	s – P el Pro	ipeli ocess	ning	g in	15
UNIT IV	BIT-LEVEL A Bit-Level Arith Plan and Bit-Pl Serial FIR Filte Distributed Arit	metic Architect ane – Based Di r –CSD Repres	tures – I gital Filte	Parallel M ers – Desig	Multip sign of	ipliers of Lyo	n's Bi	it-Seria	al Mul	tiplier	s usin	g Hor	ner's	Rule	e –]	Bit-	15
UNIT	PROGRAMM	ING DIGITAI	L SIGNA	L PROC	CESS	SORS											15
V	Synchronous – Skew and Clo Pipelining – Pro	ck Distribution	n in Bit-	-Level Pip	Pipelin	lined V	VLSI	Design	ns –W	Vave 1	Pipelir	ning -	- As	ynch			
															T	otal:	75
REFER	ENCE BOOKS																
3.	Keshab K. Parhi	, "VLSI Digital	Signal P	rocessing	g syste	stems, I	Design	n and i	mplen	nentati	ion", \	Wiley,	Inte	r Sci	ence	e, 199	99.
4.	Mohammed Isan	nail and Terri F	Fiez, "And	alog VLSI	SI Sign	gnal an	ıd Info	rmatic	on Pro	cessin	g", M	c Gra	w-Hi	11, 19	994.	,	

P15VLI	D202	COMPUTER AIDED DESIGN OF VLSI CIRCUITS					Ma				
			4	0	0	4	100)			
COURS	SE OUTCOMI	<u>ES</u>									
At the e	end of each uni	t, the students will be able to -									
1.		and analyze the VLSI design methodologies and algorithmic graph theory.									
2.		llustrate layout design rules, placement and partitioning.									
3.		alyze floor planning and routing concept.									
4.		verify the various modeling of simulation.									
5.	Analyze and il	llustrate synthesis and scheduling.									
UNIT	VLSI DESIG	GN METHODOLOGIES AND ALGORITHMIC GRAPHY THEORY						12			
I	and Comput	Introduction to VLSI Design Methodologies – VLSI Design Automation Tools – Algorithmic Graph Theory and Computational Complexity – Tractable and Intractable Problems – General Purpose Methods for Combinatorial Optimization									
UNIT	PLACEME	NT AND PARTITIONING						12			
П	Layout Compaction – Design Rules - Problem Formulation – Algorithms for Constraint Graph Compaction – Placement And Partitioning – Circuit Representation – Wire length Estimation – Placement Algorithms – Partitioning.										
UNIT	FLOORPLA	ANNING AND ROUTING						12			
III		ng Concepts – Shape Functions and Floor Plan Sizing – Types of Local Routin nannel Routing – Global Routing – Algorithms for Global Routing.	ng P	roble	ems	– A	rea				
UNIT	SIMULATI	ON AND VERIFICATION						12			
IV		ation – Gate-Level Modeling And Simulation – Switch-Level Modeling al Logic Synthesis – Binary Decision Diagrams – Two Level Logic Synthesis.	and	l Siı	nula	tioi	1 –				
UNIT	HIGH LEV	EL SYNTHESIS						12			
V		odels for High Level Synthesis – Internal Representation of the Input Algorand Scheduling – Scheduling Algorithm – Assignment problem – High Level T					on-	ĺ			
						T	otal:	60			
REFER	ENCE BOOK	S									
1.		Algorithms for VLSI Design Automation", John Wiley & Sons, 2009.									
2.		, "Algorithms for VLSI Physical Design Automation" Kluwar Academic Publis	hers	, 200)2						
3.		"Evolutionary Algorithms for VLSI CAD", Kluwer Academic Publishers, Bosto									
4.		gard D., Fishburn J. and Keutzer K., "Algorithms and Techniques for VLSI Lablishers, Boston, 1989.	iyou	t Syn	thes	is"	Klu	wer			

P15VLD)203	LOW POWER VLSI DESIGN	L 3	T 0	P 0	C 3	Marks
COURS	E OUTCOME	<u>es</u>					
At the er	nd of each uni	t, the students will be able to -					
1. Di	iscuss about the	e sources of power consumption in CMOS and hierarchy of limits					
2. Ca	alculate the pov	ver estimation in CMOS at logic level and circuit level.					
3. Ar	nalyze the syntl	nesis and software design for low power.					
4. De	escribe the SOI	CMOS Devices.					
5. Kı	now how to syr	nthesis SOI CMOS digital and analog circuits.					
UNIT I	Introduction MOSFET De	SSIPATION IN CMOS - Sources of Power Dissipation – Designing for Low power – Physics of Fewices – Power Dissipation in CMOS – Hierarchy of Limits of Power – Full and System limits.					
UNIT	POWER ES	ΓΙΜΑΤΙΟΝ					9
П	Statistical Te Vector Comp	Signals – Signal Probability Calculation – Probabilistic Techniques for Signal Achniques – Estimation of Glitching Power – Sensitivity Analysis – Power Estaction – Power Dissipation in Domino CMOS – Circuit Reliability – Power Estin Level Power Estimation – Information-Theory-Based Approaches – Estimation – Standard Power Estimation – Information-Theory-Based Approaches – Estimation – Information-Theory-Based – Informat	tima imat	tion ion a	Usin at the	g In Circ	put cuit
UNIT	SYNTHESIS	S AND SOFTWARE DESIGN FOR LOW POWER					9
III	Power Dissip	evel Transforms – Logic Level Optimization for Low power – Circuit Level – ation – Software Power Estimation – Software Power Optimizations – Automat Co-design for Low Power.					
UNIT	SOI CMOS	DEVICE					9
IV	Effects - Mo	 Basic SOI Technology – Back Gate Bias Effects – Short Channel Effects bbility – Floating Body Effects – Subthreshold Behavior – Impact Ionizat uced Leakage – Self-Heating – Hot Carriers – Accumulation-Mode Devices. 					
UNIT	SOI CMOS	DIGITAL AND ANALOG CIRCUITS					9
V	Frequency Di	ynamic Logic Circuits – DRAM – SRAM – CAM – Gate Array – CPU – Nvider – SOI Op Amps – Filters – ADC and DAC – Sigma – Delta ADC – RF Cier – Mixer – Voltage Controlled Oscillator.					
						T	otal: 45
REFER	ENCE BOOK	S					
1.	Roy K. and Pr	rasad S.C., "Low Power CMOS VLSI circuit design," Wiley,2011.					
2.	James B. Kuo,	Shin chia Lin, "Low voltage SOI CMOS VLSI Devices and Circuits", John Wil	ey a	nd so	ons, i	nc 2	008.
3.	Dimitrios Sou	dris, Chirstian Pignet, Costas Goutis, "Designing CMOS Circuits For Low Powe	r",]	Kluw	ver, 2	2002	
4.	Kuo J.B and L	ou J.H, "Low voltage CMOS VLSI Circuits", Wiley 1999					

P15VI	D204 VLSI DESIGN LABORATORY – II	L	T	P	C 2	Marks					
COLIB	SE OUTCOMES	0	U	4		100					
	end of each unit, the students will be able to -										
1.	1. Design and simulate the performance analysis of source followers, and OP- AMPs.										
2.	Design and simulate different types of current mirrors.										
3.	Design and simulate the gate –level and switch – level modeling methods.										
4.	Implementation of Stepper Motor Control using FPGA.										
5.	Design and implement the elevator controller, alarm clock controller, model train controll	er									
LIST	OF EXPERIMENTS										
1.	Design and simulate frequency response and noise analysis of any Source followers.										
2.	Design and simulate operational amplifier performance parameters - One-stage Op Amps,	Γwo-s	tage	Op A	Amps						
3.	Design and implementation of BIT - SLICE using FPGA.										
4.	Design and simulate cascode current mirrors and active current mirrors.										
5.	Design and Simulation of Gate-level modeling.										
6.	Design and Simulation of Switch-level modeling.										
7.	Implementation of Stepper motor controller using FPGA.										
8.	Implementation of Elevator controller using Embedded Microcontroller.										
9.	Implementation of Alarm Clock controller using Embedded Microcontroller.										
10.	Implementation of Model Train controller using Embedded Microcontroller.										

P15VLD501		ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS	L 3	T 0	P 0	C 3	Marks 100
COU	RSE OUTCOME	ES					
At the	end of each uni	t, the students will be able to -					
1.	Design the single	e stage amplifiers using PMOS and NMOS driver circuits					
2.	Describe and ana	llyze the concepts of single stage amplifiers and noise characteristics associated v	vith	amp	lifie	ſs.	
3.	Illustrate and ana	llyze the types of current mirrors, active loads and the concepts of voltage and cu	rren	t ref	eren	ce ci	rcuits.
4.	Analyze the Op	Amps circuits and frequency compensation of ICs.					
5.	Synthesize the st	ability and frequency compensation of Op-Amps.					
UNI	SINGLE ST.	AGE AND DIFFERENTIAL AMPLIFIERS					9
Ι		pts – Common Source Stage – Source Follower – Common Gate Stage – Casc ifferential Operation – Basic Differential Pair – Differential Pair With MOS Load					gle
UNI	FREQUENC	CY RESPONSE AND NOISE ANALYSIS					9
II		- Association of Poles with Nodes - Frequency Response of Common Source St	_				
		wers – Common Gate Stage – Cascode Stage – Differential Pair – Statistical Changle Stage Amplifiers – Noise in Differential Amplifiers – Noise Bandwidth.	ıracı	erist	ics c	f No	oise
UNI	CURRENT	MIRRORS, ACTIVE LOADS AND REFERENCES					9
III	Common Em Amplifier wi	ors – Simple Current Mirrors – Cascode Current Mirrors – Wilson Current Mirror inter/Common Source Amplifier with Complementary Load – Common Emit th Depletion Load – Common Emitter/Common Source Amplifier with Diode Pair with Current-Mirror Load – Low-Current Biasing – Supply Insensitive Biasing.	ter/0 e-Co	Com	mon cted	Sou Loa	rce d –
UNIT	OPERATIO	NAL AMPLIFIERS					9
IV	Operational 2	pt of Op Amp – Deviations from Ideality in Real Operational Amplifiers – Bas Amplifiers – Two Stage MOS Operational Amplifiers with Cascodes – MOS Amplifiers – MOS Folded-Cascode Operational Amplifiers – MOS Active-C	Tel	esco	pic-C	Casco	ode
UNI	STABILITY	AND FREQUENCY COMPENSATION					9
V		iderations – Multipole systems – Phase Margin – Frequency Compensation – Comps – Slew Rate – Methods of Improving Slew – Rate in Two Stage Op Amp Op Amps.					
						T	otal: 45
REFE	RENCE BOOK	S					
1.	Behzad Razav	i, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2001.					
2.	Paul R. Gray, 5th Edition, W	Paul J. Hurst, Stephen H. Lewis, Robert G. Meyer, "Analysis and Design of Anal Viley, 2009.	log i	Integ	rate	d Cir	cuits",

P15VLD5	512 EMBEDDED SYSTEMS	L 3	T 0	P 0	C 3	Mark 100	S
COURSE	COUTCOMES	3	•	U		100	
	d of each unit, the students will be able to -						
1. Illu	strate the basic architecture of embedded system.						
2. Ana	alyze the ARM and SHARC processors.						
3. Ana	alyze and describe about the different networks in the embedded system						
4. Co	mpute the real time characteristics of embedded system						
5. Des	sign the techniques used to describe the embedded system design.						
UNIT I	EMBEDDED ARCHITECTURE Embedded Computers – Characteristics of Embedded Computing Applications – Classistem Design – Embedded System Design Process – Requirements – Specification and Designing Hardware and Software Components – System Integration.						9
UNIT II	EMBEDDED PROCESSOR AND COMPUTING PLATFORM ARM Processor – Processor and Memory Organization – Data Operations – Flow Processor Memory Organization – Data Operations – Flow of Control – Parallelism with Configuration – ARM Bus – SHARC Bus – Memory Devices – Input / Output Devi Alarm Clock	instr	uctio	ns –	CPU	J Bus	9
UNIT III	NETWORKS Distributed Embedded Architecture – Hardware and Software Architectures – Networks – I ² C – CAN Bus – SHARC link ports – Ethernet – Myrinet – Internet – Design Example						9
UNIT IV	REAL-TIME CHARACTERISTICS Clock Driven Approach – Weighted Round Robin Approach – Priority Driven Approach Static Systems – Effective Release Times and Deadlines – Optimality of the Earlies Algorithm – Off-line Versus On-Line Scheduling.						9
UNIT	SYSTEM DESIGN TECHNIQUES						9
V	Design Methodologies – Requirement Analysis – Specification – System Analysis and Quality Assurance – Design Example: Telephone PBX-Ink Jet Printer – Personal Digit Boxes.						
l.					T	otal: 4	4 5
REFERE	NCE BOOKS						_
Pı	Tayne Wolf, "Computers as Components: Principles of Embedded Computing System ablishers, 2001.	Desig	gn",	Mor	gan	Kaufma	an
	ne. W.S. Liu, "Real-Time systems", Pearson Education Asia, 2000						
8.	rank Vahid and Tony Givargi, "Embedded System Design: A Unified Hardware/Software Sons, 2000	Intr	oduc	tion	", Jo	ın Wile	эу
4. K	rishna C. M and Shin K. G., "Real-Time Systems", McGraw-Hill, 1997						

P15VLI	NANOELECTRONICS	L 3	T 0	P 0	_	Ma:			
COLIDS	EOUTCOMES	3	U	U	3	100			
	E OUTCOMES nd of each unit, the students will be able to -								
	esign and illustrate circuit design using FINFET.								
	esign SRAM, NRAM, MRAM and NATURE.								
	esign nano-wire and NASIC circuits.								
	nalyze CNT and design FPCNA.								
	esign the circuit using graphene transistor, RTD and QCA.								
UNIT	FINFETS CIRCUIT DESIGN						9		
I	Introduction of FinFETs – Shorted-Gate and Independent-Gate FinFETs – Logic Design using FinFETs – Threshold Voltage Control through Multiple Supply Voltages – The Principle of TCMS – Logic Design using TCMS – Schmitt Trigger using FinFETs – Latch Design using FinFETs – Precharge – Evaluate Logic Circuits using FinFETs – FinFET Layout – Oriented FinFETs.								
UNIT II	Fundamentals Nonplanar SRAM – Modeling of FinFET Devices for SRAM Applications – SRAM Design – Finfet Design for SRAM – NRAM – MRAM – PCM – Temporal Logic Folding – Architecture of Nature – Power Estimation – Nanomap Optimization Flow.								
UNIT III	CHARACTERIZATION TECHNIQUES, NANO WIRE ARRAYS AND Nanowires Fabrication Technologies – Crossbar Technologies – Architecture of Nano Crossbars - NASIC Building Blocks – NASIC Circuit Styles – NASIC Logic Styles – N	wire (Cros	sbar	s - Te	esting			
UNIT	CARBON NANOTUBE VLSI CIRCUITS AND FPCNA						9		
IV	CNTFET – Mis Positioned-CNT – Immune Logic Design – Design-Metallic CNT In VLSI Compatible Metallic – CNT Removal – Design Flow – Nanoelectronic Devices Nanotube LUT Fabrication.	mune – FPC	CN. CNA	FET Arc	Circu hitect	uits – ure –			
UNIT	GRAPHENE TRANSISTOR, RTD AND QUANTUM CELLULAR AUTOMATE						9		
V	Fabrication – Graphene Tansistors – Analog Circuits – Digital Circuits – Res Fundamentals – QCA Fundamentals – Logic Design With QCA.	onant	Tun	neli	ng D	iodes			
					7	otal:	45		
REFER	ENCE BOOKS								
1.	Deming Chen and Niraj K. Jha., "Nanoelectronic Circuit Design", Springer, 2011.								
	Nladimir V. Mitin, Viatcheslav A. Kochelap & Michael A. Stroscio., "Introduction Nanotechnology, Engineering and Applications", Cambridge University Press.								
٥.	Peter J.F. Harris, "Carbon Nanotube Science Synthesis, Properties and Applications", Ca	nbrid	ge U	nive	rsity l	Press.			
4.	Sze S.M., "VLSI Technology", Mc.Graw.Hill Second Edition, 1998.								
	Goser K., Glosekotter P. Dienstuhl J., "Nanoelectronics and Nanosystems from Transista Devices", Springer, 2008.	rs to i	nole	cula	r and	quan	tum		

Sona College of Technology, Salem (An Autonomous Institution)

Courses of Study for ME III Semester under Regulations 2015

Electronics and Communication Engineering

Branch: M.E. VLSI Design

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit		
	1	Theory		1				
1	P15VLD509	Professional Elective- ASIC Design	3	0	0	3		
2	P15VLD511	Professional Elective - Analysis and Design of Digital Integrated Circuits	3	0	0	3		
3	P15VLD607	Open Elective- Human Resource Development	3	0	0	3		
		Practical						
4	P15VLD301	Project Phase - I	0	0	16	8		
Total Credits								

Approved by

Chairman, Electronics and Communication Engineering BOS Member Secretary, Academic Council Chairperson, Academic Council & Principal Dr.R.S.Sabeenian Dr.R.Shivakumar Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/ECE, Third Semester ME VLSI Students and Staff, COE

COURSE OUTCOMES

At the end of each unit, the students will be able to -

- Explain the types of ASICs and design the CMOS logic cells.
- Apply the concepts of programmable ASICs, programmable ASIC logic cells and programmable ASIC I/O cells.
- Analyze and design the programmable ASIC interconnect and low level design language.
- Write the code using Verilog and VHDL Logic synthesis and analyze the simulation process.
- Illustrate and analyze the steps involved in floor planning, placement and routing.

INTRODUCTION TO ASICS, CMOS LOGIC AND ASIC LIBRARY DESIGN UNIT

9

I Types of ASICs - Design Flow - CMOS Transistors CMOS Design Rules - Combinational Logic Cell -Sequential Logic Cell – Data Path Logic Cell – Transistors As Resistors - Transistor Parasitic Capacitance – Logical Effort - Library Cell Design - Library Architecture.

UNIT PROGRAMMABLE ASICS, PROGRAMMABLE ASIC LOGIC CELLS AND PROGRAMMABLE II ASIC I/O CELLS

9

Anti Fuse - Static RAM - EPROM and EEPROM Technology - PREP Benchmarks - Actel ACT - Xilinx LCA - Altera FLEX - Altera MAX DC - AC Inputs And Outputs - Clock & Power Inputs - Xilinx I/O Blocks.

UNIT PROGRAMMABLE ASIC INTERCONNECT, PROGRAMMABLE ASIC DESIGN SOFTWARE AND 9 Ш LOW LEVEL DESIGN ENTRY

Actel ACT - Xilinx LCA - Xilinx EPLD - Altera MAX 5000 and 7000 - Altera MAX 9000 - Altera FLEX -Design Systems -Logic Synthesis - Half gate ASIC -Schematic Entry - Low Level Design Language - PLA Tools -EDIF -CFI Design Representation.

UNIT ASIC CONSTRUCTION, FLOOR PLANNING, PLACEMENT AND ROUTING

9

IV System Partition - FPGA Partitioning - Partitioning Methods - Floor Planning - Placement - Physical Design Flow – Global Routing - Detailed Routing – Special Routing – Circuit Extraction – DRC.

UNIT ARCHITECTURE DESIGN AND CHIP DESIGN

9

Hardware Description Languages - Register- Transfer Design - High-Level Synthesis Architectures For Low Power - System-On-Chips and Embedded CPU's - Architecture Testing - Design Methodologies-Kitchen Timer Chip – Microprocessor Datapath.

Total: 45

REFERENCE BOOKS

V

- Smith M.J.S, "Application Specific Integrated Circuits", Addison -Wesley Longman Inc, 2003.
- Wayne Wolf., "Modern VLSI Design System-On -Chip Design", Pearson Education, 2005. 2.
- Farzad Nekoogar and Faranak Nekoogar, "From ASICs to SOCs: A Practical Approach", Prentice Hall PTR, 2003. 3.
- Wayne Wolf, "FPGA-Based System Design", Prentice Hall PTR, 2004. 4.

II

IV

V

L T P C 3 0 0 3

COURSE OUTCOMES

At the end of each unit, the students will be able to -

- 1. Explain the digital integrated circuits, devices-bipolar and MOS.
- 2. Analyze the fabrication, layout and simulation and MOS inverter circuits.
- 3. Analyze of the high speed CMOS logic design and dynamic logic design.
- 4. Discuss about the semiconductor memory design.
- 5. Examine the interconnect design and power grids.

UNIT DEEP SUBMICRON DIGITAL IC DESIGN, TRANSISTORS AND DEVICES

9

I MOS AND BIPOLAR

Review of Digital Logic Gate Design-Digital IC Design – Computer Aided Design of Digital Circuits – The MOS Transistor – Bipolar Transistor And Circuits – IC Fabrication Technology – Layout Basics – Modeling The MOS Transistor for Circuit Simulation – SPICE MOS Level1 Device Model – BSIM3 Model-Additional Effects in MOS Transistors – SOI Technology.

UNIT FABRICATION, LAYOUT AND SIMULATION, MOS INVERTER CIRCUITS

9

Voltage Transfer Characteristics – Noise Margin Definitions – Resistive Load Inverter Design – NMOS Transistors as Load Devices – CMOS Inverter-Pseudo – NMOS Inverters – Sizing Inverters – Tristate Inverters.

UNIT HIGH SPEED CMOS LOGIC DESIGN, TRANSFER GATE AND DYNAMIC LOGIC DESIGN

9

III Switching Time Analysis – Detailed Load Capacitance Calculation – Improving Delay Calculation With Input Slope - Gate Sizing For Optimal Path Delay – Optimizing Path With Logical Effort – Basic Concepts of Transfer Gate – CMOS Transmission Gate Logic – Dynamic D Latches And D Flip-Flops – Domino Logic – Voltage Bootstrapping.

UNIT SEMICONDUCTOR MEMORY DESIGN, ADDITIONAL TOPICS IN MEMORY DESIGN

9

Introduction MOS Decoders – Static RAM Cell Design – SRAM Column I/O Circuitry – Memory Architecture – Content Addressable Memories – FPGA – Dynamic Read – Write Memories – Read Only Memories – EPROMs And EEPROMs – Flash Memory – FRAMs.

UNIT INTERCONNECT AND POWER GRID AND CLOCK DESIGN

9

Interconnect RC Delays – Buffer Insertion for Very Long Wires – Interconnect Coupling Capacitance – Interconnect Inductance – Antenna Effects – Power Distribution Design – Clocking and Timing Issues – Phase-Locked Loops – Delay-Locked Loops.

Total: 45

REFERENCE BOOKS

- 1. David A Hodges, Horace G Jackson, Resve A Saleh, "Analysis and design of Digital Integrated Circuits in deep submicron technology", Tata McGraw Hill, Edition 2005.
- Sung-Mo Kang, Yusuf Leblebici, "CMOS Digital Integrated Circuits-analysis and design", Tata McGraw Hill, Third edition, 2003.

SEMESTER - III

P15VLD607 HUMAN RESOURCE DEVELOPMENT L:T:P:C 3:0:0:3

Course Outcomes: The Student will be able to:

- 1. Study the overview of Human Resource Development.
- 2. Understand the designing of HRD systems and developing HRD Strategies.
- 3. Study the methods of training and development for the employees.
- 4. Design performance appraisal system for managers.
- 5. Link HRD with the strategic plan of the organization

Unit	Syllabus Contents	Number of Sessions
1	INTRODUCTION TO HRD Nature and concept of HRD – Improving performance through HRD- Recent scenario of HRD in India- HRM and HRD – Role and Competencies of HRD manager-Challenges of HRD	9
2	DESIGNING HRD SYSTEMS AND DEVELOPING HRD STRATEGIES Subsystems of HRD - Designing HRD Strategy- HRD Strategy model- Future challenges to HRD Strategy.	9
3	TRAINING AND DEVELOPMENT Learning Cycle-Learning Process- objectives of training —Training need analysis-Training methods- Evaluation of Training - Designing management development Programs — Leadership development — Assessment and development center	9
4	PERFORMANCE APPRAISAL AND POTENTIAL APPRAISAL Designing Performance Appraisal System- Performance Appraisal Process- Methods of Performance Appraisal- Potential Appraisal-Matching Career Needs of Organization and Individual- Competency mapping - Career Planning Process-Employee Coaching – Process of Employee Counseling – Types of Mentoring	9
5	QUALITY OF WORK LIFE AND STRATEGIC HRD Empowering Employees- Need for Quality of work life- HRD Audit and Human Resource Accounting- HRD Culture – Linkage of Organizational Strategy to HRD Tactics- HRD and Organizational Change.	9
	Total No of Sessions	45

Learning Resources:

- 1. Tapomoy Deb, Human Resource Development, Ane Books, 2006
- 2. Mankin, D., *Human resource development*, Oxford University Press India,2015
- 3. Udai pareek., Designing & Managing Human resources sytems,2015
- 1. Haldar, U. K., *Human resource development*, Oxford University Press India, 2015
- 2. Rao, T.V., Future of HRD, Macmillan Publishers India, 2015
- 3. Nadler, L., Corporate human resources development, Van Nostrand Reinhold, 2015
- 4. Cooper, Managing Stress, Sage, 2011
- 1. http://forum.hrdiscussion.com/
- 2. http://network.hrmtoday.com/forum
- 3. http://www.citeman.com/11853-evolution-of-the-concept-of-hrm/
- 4. www.citehr.com
- 5. www.shrm.org

1 Text Books

Reference

Books

2

Web sites / links

(An Autonomous Institution)

Courses of Study for ME IV Semester under Regulations 2015

Electronics and Communication Engineering

Branch: M.E. VLSI Design

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit		
		Practical						
1	P15VLD401	Project Phase – II	0	0	24	12		
Total Credits								

Approved by

Chairman, Electronics and Communication Engineering BOS Member Secretary, Academic Council Chairperson, Academic Council & Principal Dr.R.S.Sabeenian Dr.R.Shivakumar Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/ECE, Fourth Semester ME VLSI Students and Staff, COE